https://www.cnblogs.com/kouryoushine/articles/8007648.html 漫画
Kubernetes原理
Kubernetes是一个基于Docker容器的开源编制系统,它能在跨多个主机上管理Docker应用,并提供应用程序部署 维护和扩展的基本机制。
它透明地为用户提供原生态系统,如“需要5个 WildFly服务器和1个 MySQL服务器运行". Kubernetes具有自我修复机制,如重新启动 重新启动定时计划 复制容器以确保恢复状态,用户只需要定义状态,那么 Kubernetes就会确保状态总是在集群中。
Docker定义了运行代码时的容器,有命令用来启动 停止 重启 链接容器,Kubernetes使用Docker打包以及实例化应用程序。
一个典型的应用程序必须跨多个主机。 例如,您的web层(Apache )可能运行在一个容器。 同样地,应用程序层将会运行在另外一组不同的容器中。 web层需要将请求委托给应用程序层。 当然,在某些情况下,你可能将web服务器和应用服务器打包在一起放在相同的容器。 但是数据库层通常运行在一个单独层中。 这些容器之间需要相互交互。 使用上面的任何解决方案都需要编制脚本启动容器,以及监控容器,因防止出现问题。 而Kubernetes在应用程序状态被定义后将为用户实现所有这些工作。
主要组件说明
Kubernetes 集群中主要存在两种类型的节点,分别是 master 节点,以及 minion 节点。
Minion 节点是实际运行 Docker 容器的节点,负责和节点上运行的 Docker 进行交互,并且提供了代理功能。
Master 节点负责对外提供一系列管理集群的 API 接口,并且通过和 Minion 节点交互来实现对集群的操作管理。
组件说明
apiserver:用户和 kubernetes 集群交互的入口,封装了核心对象的增删改查操作,提供了 RESTFul 风格的 API 接口,通过 etcd 来实现持久化并维护对象的一致性。
scheduler:负责集群资源的调度和管理,例如当有 pod 异常退出需要重新分配机器时,scheduler 通过一定的调度算法从而找到最合适的节点。
controller-manager:主要是用于保证 replicationController 定义的复制数量和实际运行的 pod 数量一致,另外还保证了从 service 到 pod 的映射关系总是最新的。
kubelet:运行在 minion 节点,负责和节点上的 Docker 交互,例如启停容器,监控运行状态等。
kube-proxy:运行在 minion 节点,负责为 pod 提供代理功能,会定期从 etcd 获取 service 信息,并根据 service 信息通过修改 iptables 来实现流量转发(最初的版本是直接通过程序提供转发功能,效率较低。),将流量转发到要访问的 pod 所在的节点上去。
etcd:key-value键值存储数据库,用来存储kubernetes的信息的。
flannel:Flannel 是 CoreOS 团队针对 Kubernetes 设计的一个覆盖网络(Overlay Network)工具,需要另外下载部署。我们知道当我们启动 Docker 后会有一个用于和容器进行交互的 IP 地址,如果不去管理的话可能这个 IP 地址在各个机器上是一样的,并且仅限于在本机上进行通信,无法访问到其他机器上的 Docker 容器。Flannel 的目的就是为集群中的所有节点重新规划 IP 地址的使用规则,从而使得不同节点上的容器能够获得同属一个内网且不重复的 IP 地址,并让属于不同节点上的容器能够直接通过内网 IP 通信。
RC:
Replication Controller
确保pod数量:RC用来管理正常运行Pod数量,一个RC可以由一个或多个Pod组成,在RC被创建后,系统会根据定义好的副本数来创建Pod数量。在运行过程中,如果Pod数量小于定义的,就会重启停止的或重新分配Pod,反之则杀死多余的。
service :
service 可以为一组相同功能的pod应用提供统一的入口地址,并将请求负载均衡分发到各个容器应用上。service的负载均衡功能由node节点上的kube-proxy提供